<optgroup id="rk8nz"></optgroup>
    <option id="rk8nz"><source id="rk8nz"></source></option>
    <meter id="rk8nz"><source id="rk8nz"><ruby id="rk8nz"></ruby></source></meter>
  1. <address id="rk8nz"><noscript id="rk8nz"></noscript></address>

      <nobr id="rk8nz"></nobr>
      <pre id="rk8nz"></pre><pre id="rk8nz"></pre>

      自然语言处理与信息检索共享平台 自然语言处理与信息检索共享平台

      End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

      NLPIR SEMINAR Y2019#11

      INTRO

      In the new semester, our Lab, Web Search Mining and Security Lab, plans to hold an academic seminar every Monday, and each time a keynote speaker will share understanding of papers on his/her related research with you.

      Arrangement

      This week’s seminar is organized as follows:

      1. The seminar time is 1.pm, Mon, at Zhongguancun Technology Park ,Building 5, 1306.
      2. The lecturer is Zhaoyang Wang , the paper’s title is End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF.
      3. The seminar will be hosted by Qinghong Jiang.
      4. Attachment is the paper of this seminar, please download in advance.

      Everyone interested in this topic is welcomed to join us. the following is the abstract for this week’s paper.

      End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

      Xuezhe Ma and Eduard Hovy

      Abstract

      State-of-the-art sequence labeling systems traditionally require large amounts of task-specific knowledge in the form of handcrafted features and data pre-processing. In this paper, we introduce a novel neutral network architecture that benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM, CNN and CRF. Our system is truly end-to-end, requiring no feature engineering or data preprocessing, thus making it applicable to a wide range of sequence labeling tasks. We evaluate our system on two data sets for two sequence labeling tasks — Penn Treebank WSJ corpus for part-of-speech (POS) tagging and CoNLL 2003 corpus for named entity recognition (NER). We obtain state-of-the-art performance on both datasets—97.55% accuracy for POS tagging and 91.21% F1 for NER.

      You May Also Like

      About the Author: nlpvv

      发表评论

      曾道玄机资料彩图
      <optgroup id="rk8nz"></optgroup>
        <option id="rk8nz"><source id="rk8nz"></source></option>
        <meter id="rk8nz"><source id="rk8nz"><ruby id="rk8nz"></ruby></source></meter>
      1. <address id="rk8nz"><noscript id="rk8nz"></noscript></address>

          <nobr id="rk8nz"></nobr>
          <pre id="rk8nz"></pre><pre id="rk8nz"></pre>
          <optgroup id="rk8nz"></optgroup>
            <option id="rk8nz"><source id="rk8nz"></source></option>
            <meter id="rk8nz"><source id="rk8nz"><ruby id="rk8nz"></ruby></source></meter>
          1. <address id="rk8nz"><noscript id="rk8nz"></noscript></address>

              <nobr id="rk8nz"></nobr>
              <pre id="rk8nz"></pre><pre id="rk8nz"></pre>
              广西快3走势图基本图 创富心水论坛公式 北京pk10单双网页计划 体彩顶呱刮单张彩票最高可中 快速赛车PK10 海南飞鱼实时 马总会三肖中特 青海11选5彩票控r 江苏快3助赢软件 辽宁快乐12软件下载 香港马报一码中特 香港六合彩免费公开 天津快乐十分开奖走试图 华东15选5幸运之门 福建快3冷热号